
SysAdmin - Part 2 - Meta-characters & Process handling

Michel FACERIAS

15 octobre 2024

Polytech Montpellier

Université de Montpellier

1

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

Table des matières

1 Understanding meta-characters 3
1.1 How the shell expands meta-characters . 3

1.1.1 Concept : Meta-characters in file names . 3
1.1.2 To do : Reproduce the examples above . 4
1.1.3 Question : Dealing with meta-characters . 4
1.1.4 To do : Implement the questions above . 4

1.2 How to avoid the shell expansion of meta-characters 5
1.2.1 Concept : Using an escape character . 5
1.2.2 Concept : Using a protection . 5
1.2.3 Concept : Sub-chain grouping, a definitive explanation 5

2 Process handling 6
2.1 Process birth, life and death . 6

2.1.1 Concept : What is a process ? . 6
2.1.2 To do : How to identify a process ? . 6
2.1.3 Question : Find some process information . 6
2.1.4 Concept : The birth of a process . 7
2.1.5 Question : Luke, I am your father ! . 7
2.1.6 Concept : Killing a process . 7
2.1.7 To do : Licence to kill . 7
2.1.8 Question : SIGTERM vs SIGKILL . 8
2.1.9 Concept : The lifecycle of a process . 8
2.1.10 Question : Process states . 9
2.1.11 To do : How to use the ps command ? . 9
2.1.12 Concept : Process priority . 10
2.1.13 To do : Play with niceness . 10
2.1.14 Concept : Process dashboard . 11
2.1.15 To do : Measuring execution time . 12

2.2 Linux Process vs. Thread . 12
2.2.1 Concept : Process . 12
2.2.2 Concept : Threads . 13
2.2.3 Concept : Single-threaded vs. multi-threaded process 14
2.2.4 Question : Is Firefox multi-threaded ? . 14

2.3 More jobs from the same shell . 14
2.3.1 Concept : Starting foreground . 14
2.3.2 Concept : Exiting stopped state . 15
2.3.3 Concept : Execution in background mode . 15
2.3.4 Concept : Direct execution in background mode 15
2.3.5 Concept : Identifying the jobs . 15
2.3.6 To do : Juggling multiple jobs . 16

2.4 Streams . 16
2.4.1 Concept : stdout redirection to file . 16
2.4.2 Concept : Concatenation vs. creation . 17
2.4.3 Concept : stderr redirection to file . 17
2.4.4 Concept : stdout and stderr redirection to file 17
2.4.5 Concept : stdin redirection from file . 18
2.4.6 Concept : Pipelining . 18
2.4.7 To do : Examples to decode . 18
2.4.8 To do : stdout redirection . 18
2.4.9 To do : stdout and stderr redirection . 19

2 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

1 Understanding meta-characters

A command and its arguments are separated by a whitespace : this is a command line. This
whitespace is understood as a separator between the command line arguments. We have already seen
some other when parsing paths, special paths (/ ~ . ..), and when writing unilines (;).

They are called meta-characters. Instead of being passed to the command, the shell interprets
the meta-characters, changing the behavior of a command or replacing them with an interpretation.
We call this shell expansion.

Remember to never use meta-characters in file names.

We will learn how to use the other characters mentioned bellow in a next part :
— # starts a comment, all that is writen after is unreadable by the shell ;
— & && || are used to control process launch ;
— | > >> < are used to handle process flow ;
— $ is used to handle variables ;
— " is used to group sub-chains, but allow shell expansion ;
— ' is used to group sub-chains, but avoid shell expansion.

Beware, do not confuse meta-characters and regular expressions :
— meta-characters are used by the shell, and alter the command line ;
— regular expressions are used by commands which are able to understand them, they

should be protected against the shell expansion.

1.1 How the shell expands meta-characters

1.1.1 Concept : Meta-characters in file names

Meta-characters in file names are used to replace characters :
— ? is the single character wildcard and represents exactly one character ;
— * is the character sequence wildcard and stands for any sequence of characters (including no

character) ;
— [] are used to give list of characters ;
— ! is used to negate a statement.
Here are some examples, using ls command. First, we start by a full view of the files in the current

directory. As we can see, 5 files are present :
$ ls
file.txt file1.txt file2.txt file3.txt file4.txt

Let’s try to show only numbered files, replacing the digit by a meta-character. The pattern of the
file name is :

— the begining of the filename : file
— one single character : ?
— the end of the filename : .txt

$ ls file?.txt
file1.txt file2.txt file3.txt file4.txt

It is possible to ask for 5 characters, and the same filename end :
$ ls ?????. txt
file1.txt file2.txt file3.txt file4.txt

Remember that . (dot) is a normal character :
$ ls ?????? txt
file1.txt file2.txt file3.txt file4.txt

3 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

You can also replace several characters with a single meta-character :
$ ls *.txt
file.txt file1.txt file2.txt file3.txt file4.txt

And here, it’s equivalent to :
$ ls *txt
file.txt file1.txt file2.txt file3.txt file4.txt

We can be even more imprecise :
$ ls *
file.txt file1.txt file2.txt file3.txt file4.txt

We could use a list of character (digits and letters are characters), here 1, 2 or 3 :
$ ls file [123]. txt
file1.txt file2.txt file3.txt

Here the character are contiguous, so we can make it simple :
$ ls file [1-3].txt
file1.txt file2.txt file3.txt

We can combine a list and a wildcard :
$ ls [a-z]ile*
file.txt file1.txt file2.txt file3.txt file4.txt

But, remember that filenames are case-sensitive :
$ ls [A-Z]ile*

We can use negation in the pattern, to find filenames without any digit :
$ ls file [!0 -9]*
file.txt

1.1.2 To do : Reproduce the examples above

Make a folder named test, and move into it. Use touch to create files file.txt
file1.txt file2.txt file3.txt file4.txt. Reproduce all the examples above, and try some va-
riations.

1.1.3 Question : Dealing with meta-characters

What are the good expressions to list :

1. files beginning with Ba, following by 3 unknown characters and ending with txt ?

2. files numbered from file000.pdf to file999.pdf ?

3. all files in the current directory ?

4. any file which name starts with any character within a-p or any digit within 0-5 ?

5. any file which name starts with any of these characters afgh and containing the character o ?

1.1.4 To do : Implement the questions above

In the folder named test and created before, create needed sample files and test your
answers.

4 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

1.2 How to avoid the shell expansion of meta-characters

1.2.1 Concept : Using an escape character

It is possible to use \ as an escape character to force the shell to understand
literally a meta-character.

We are going to use the same sample folder as in 1.1.1 part :
$ ls *
file1.txt file2.txt file3.txt file4.txt file.txt

$ ls *
ls: '*': cannot access '*': No such file or directory

Using \, the shell is forced to use * literally, and then, the ls command receives it. As there is no
file using * in its name, ls shows an error.

1.2.2 Concept : Using a protection

It is possible to use a protection to force the shell to understand literally a meta-
character too.

We are going to use the same sample folder as in 1.1.1 part :
$ ls *
file1.txt file2.txt file3.txt file4.txt file.txt

$ ls '*'
ls: cannot access '*': No such file or directory

By using ’ before and after the chain we want to protect, the shell is forced to use * literally,
and then, the ls command receives it. Its behavior is identical to before.

But, as we can see, the error message is exactly the same. In both cases, ls warns that ’*’ is not
present in any file name.

1.2.3 Concept : Sub-chain grouping, a definitive explanation

In part 1, we defined ' and " as sub-chain grouping meta-chararcter. Let’s have a
closer look, by using an expansion of a variable :

$ echo *
file1.txt file2.txt file3.txt file4.txt file.txt

$ echo '*'
*

$ echo "*"
file1.txt file2.txt file3.txt file4.txt file.txt

As we can see, there is nothing to group. We just demonstrated the protective and non-
protective effect.

So, " has no effect here. In fact, it’s used to group space-separated sub-chains to avoid the
shell to recognize the group as a unique argument in the CLI.

5 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

2 Process handling

2.1 Process birth, life and death

2.1.1 Concept : What is a process ?

A process is a computer program under execution. Linux processes are isolated
and do not interrupt each other’s execution.

Since many processes are running at any given time in Linux, they have to share the CPU.
The action of switching between two executing processes on the CPU is called process context
switching.

Process are identified by a unique number named PID (Process IDentifier). Whith Linux, the
first program started has the PID 1.

The following processes increment the number up to PID 4 294 967 295 (32 bit), then start
again from the beginning avoiding the PIDs already used.

2.1.2 To do : How to identify a process ?

Open a console and type ps aux. You will see something like this :
$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 1272 196 ? S Aug19 0:06 init [2]
root 2 0.0 0.0 0 0 ? SW Aug19 0:01 [keventd]
root 3 0.0 0.0 0 0 ? SW Aug19 0:01 [kapmd]
root 4 0.0 0.0 0 0 ? SWN Aug19 0:01 [ksoftirqd_CPU0]
root 5 0.0 0.0 0 0 ? SW Aug19 7:00 [kswapd]
root 6 0.0 0.0 0 0 ? SW Aug19 0:00 [bdflush]
root 7 0.0 0.0 0 0 ? SW Aug19 0:18 [kupdated]
root 8 0.0 0.0 0 0 ? SW Aug19 1:23 [kjournald]
...
root 214 0.0 0.4 2784 600 ? R Aug19 0:07 /usr/sbin/sshd
root 217 0.0 1.5 1976 1968 ? SL Aug19 0:13 /usr/sbin/ntpd
daemon 250 0.0 0.1 1384 180 ? S Aug19 0:00 /usr/sbin/atd
root 253 0.0 0.1 1652 232 ? S Aug19 0:02 /usr/sbin/cron
root 256 0.0 0.1 1252 136 tty1 S Aug19 0:00 /sbin/getty 38400 tty1
root 257 0.0 0.1 1252 136 tty2 R Aug19 0:11 /bin/bash
root 5072 0.0 0.4 3840 564 ? S Aug27 0:00 /usr/sbin/squid -D -sYC
proxy 5075 1.2 61.7 124456 78352 ? S Aug27 119:16 (squid) -D -sYC
proxy 5086 0.0 61.7 124456 78352 ? S Aug27 0:01 (squid) -D -sYC
proxy 5087 0.0 61.7 124456 78352 ? S Aug27 0:15 (squid) -D -sYC

2.1.3 Question : Find some process information

Answer the questions below using the example above :
1. What is the oldest process, and what is his PID ?
2. What is the PID of the sshd process ?
3. What is the name of the user running process 1 ?
4. How much time did this process take ?
5. When did it start ?
6. Could you explain the difference between the execution time and time of life (now - start time)

of the sshd process ?
7. Why isn’t there any PID 215 ?

6 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

2.1.4 Concept : The birth of a process

Linux has system calls defined for basic OS functions like file management, network
management, process management, and others. One of them allows to launch a program and
generates a process.

In fact, another process calls the system and asks it to run a program. Then, each process
is the child of another process. Normally, if a parent process dies, all child processes die
(Some processes are built to detach themselves from a dead parent, but it’s not the standard case).
The PID of a parent is called PPID (Parent Process IDentifier).

The first, init, is the ancestor of all the others. Only init has no ancestor, except the Linux
kernel itself.

2.1.5 Question : Luke, I am your father !

The ps auxf command adds a tree structure that shows the relationship between pro-
cesses (when it exists).
theForce 4542 2.4 1.9 37252 15000 ? Sl 18:59 0:00 anakin
theForce 4544 0.0 0.1 2932 868 ? S 18:59 0:00 _ luke
theForce 4545 0.0 0.2 4716 1960 pts/1 Rs 18:59 0:00 _ leia
theForce 4553 0.0 0.1 3624 984 pts/1 R+ 19:00 0:00 _ ben

1. What is the parent of the ben process and its PID ?

2. Which processes have the same parent ? What are their PIDs ?

3. What happens after 4542 process dies ?

2.1.6 Concept : Killing a process

There are two commands to kill a process from the outside of it :
— kill, which takes one or more PIDs as arguments ;
— killall, which takes as argument the name of the process.

kill is therefore more precise, because it only affects the PIDs explicitly mentioned.
Each one sends to the concerned process the SIGTERM signal. This signal is a shutdown

request that the process can do things before terminating, thus possibly saving a work in progress.
It is possible to send the SIGKILL signal instead of SIGTERM. This method is more violent

because the signal is intercepted by the system and the process concerned is purged without
notice, making it impossible to save a work in progress. This method should only be used with
stubborn or uncontrollable processes.

2.1.7 To do : Licence to kill

Open a console and run geany (a graphic text editor) in background mode (using the
ampersand as argument). Thanks to background mode, the CLI becomes usable immediately (we will
explain this later).
$ geany &
[1] 212991

Type some text in geany. Don’t save your work. Then, from the console invoke kill using geany PID :

7 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

$ kill 212991

The CLI becomes usable immediately, and geany suggests to save your work. Dismiss this action. Then,
from the console invoke kill -SIGKILL using geany PID :
$ kill -SIGKILL 212991

geany’s window close immediately.

2.1.8 Question : SIGTERM vs SIGKILL

1. What happens when you type kill 212991 ?

2. What happens when you type kill -SIGKILL 212991 ?

3. Regarding to man 7 signal, what should happen if you type kill -9 212991 ?

4. What should happen if you type kill -15 212991 or kill -SIGTERM 212991 ?

2.1.9 Concept : The lifecycle of a process

The figure below shows the lifecycle of a process :

1. The process has asked for the necessary resources and has everything to run properly. It the
waits for a CPU core slot ;

2. The process is elected by the scheduler and begins processing using a CPU core instantly ;

3. The scheduling algorithm forces the running process to give up its execution right to ensure
that each process can have a fair share of CPU resources ;

4. The process returns from a system call or an interrupt ;

5. The process makes a system call or suffers an interruption ;

6. The process requests external resources. It is mainly IO-based such as to read a file from the
disk or make a network request ;

7. The process returns when the event has occurred ;

8. The process is stopped by a STOP signal ;

9. The process is woken up by a CONTINUE signal ;

10. The process is finished, but the resources it uses have not yet been released ;

11. All resources are released by the operating system.

8 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

Running (R)

Queue

Kernel

User

New

Stopped (T)Sleep (S/D)

Zombie (Z)

Dead (X)

1

2 3

4 5

6

7

89

8

8

10

11

The letter in brackets show the status (STAT column in ps) of the process :
— R : running (kernel-land or userland) or runnable (waiting on queue) ;
— T : stopped (suspended by CTRL+Z) or traced ;
— S : interruptible sleep (waiting for an event to complete) ;
— D : uninterruptible sleep (deep sleep, usually IO) ;
— Z : defunct (zombie, rarely seen on kernels >= 3) ;
— X : dead (should never be seen) ;
— W : paging (transitional state rarely seen, not shown on the figure).

2.1.10 Question : Process states

Regarding to the ps command output at 2.1.2, answer the following questions :

1. Which processes are asleep ?

2. Which processes are active ?

2.1.11 To do : How to use the ps command ?

Search the options using the manual to view the processes :

1. In progress in the current console ;

2. Adding the name of their owner ;

3. As a whole (all) ;

4. As a whole (included without tty) ;

5. As a whole and with the ancestor tree.

9 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

2.1.12 Concept : Process priority

It is possible to run a process with modified scheduling priority, even if today
the computing power makes the manual control of the scheduler almost obsolete. In fact, it
is only used for some system tasks. However, it can be useful when working on embedded
systems of lower power

Niceness values range is :
— from -20 (most favorable to the process) ;
— to 19 (least favorable to the process) ;
— default value is 0.

Only superuser can use negative niceness or can decrease the value (give more priority)
to any process.

The nice command can be used :
— with no argument, it shows the niceness of the current process ;
— when giving a niceness value and a command as argument, it runs this command with the

niceness value given.

The renice command can be used to alter priority of running processes. You must give the new
niceness and the PID of the process as arguments.

To see more, read the manual : man nice or man renice.

2.1.13 To do : Play with niceness

$$ variable is the PID of the parent process, and we are going to use it as an alias to
retrieve it. Of course, the PID below will differ from those you will read on your computer. Open a
console, type the following commands and try to understand the steps.

$ echo $$
336706

$ nice
0

The current console (the parent of echo) is running bash as 336706 PID, with the default niceness 0.
$ echo $$
336706

$ nice bash

$ echo $$
336736

$ nice
0

$ exit
exit

$ echo $$
336706

We are launching another bash (336736), with the default niceness 0, and then exiting to go back to
its parent (336706).

$ echo $$
336706

$ nice -n 10 bash

10 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

$ echo $$
336744

$ nice
10

$
exit

$ echo $$
336706

We are launching an other bash (336744), with the niceness +10 (less priority), and then exiting to go
back to its parent (336706).

$ echo $$
336706

$ nice -n 10 bash

$ echo $$
337188

$ nice
10

$ renice -n 11 -p $$
337188 (process ID) old priority 10, new priority 11

$ nice
11

$ renice -n 1 -p $$
renice: failed to set priority for 337188 (process ID)

$ nice
11

$ renice -n 25 -p $$
337188 (process ID) old priority 11, new priority 19

$ nice
19

$ exit

$ echo $$
336706

We are launching a new bash, and playing with its niceness. We can only increase it, not more than
19.

2.1.14 Concept : Process dashboard

Linux offers a text dashboard to control the state of the processes :
— top is the historical version ;
— htop is the improved version, colorized and more user friendly.

The illustration below shows htop in operation.

11 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

Processes are sorted in descending order of CPU usage. htop presents a command help in the form
of a menu bar located at the bottom of the window. You can use it to handle process (kill, renice)
instead of using the CLI. Like top, it retains the use of the Q key to exit.

2.1.15 To do : Measuring execution time

Open a console and use the time command to measure the duration of another command.
dd is used to make special copies. Here we are going to copy 100 000 blocs of 512 bytes from the pseudo-
random generator to a standard file.
$ time dd if=/dev/urandom of=toto count =100000
100000+0 blocs readed
100000+0 blocs writed
51200000 bytes (51 MB, 49 MiB) writed , 1 ,15507 s, 44,3 MB/s

real 0m1 ,160s
user 0m0 ,081s
sys 0m0 ,967s

First, the screen shows the result of two commands :
— dd itself, the 3 first lines ;
— time, the 3 last lines, showing dd execution times.

As you can see, most of the compute time is consumed by sys(the system). It’s the time needed
to randomize numbers and to write in the file. The time in user(the userland) is very short, and
corresponds with the starting time of the process, calling the system API, and printing the status. The
real time is the apparent time for the total execution and is not the sum of the others.

Try to change the value of count attribute, and/or use /dev/zero as input, then analyse the results.

2.2 Linux Process vs. Thread

We’ll discuss the details of the process and thread in the context of Linux.

2.2.1 Concept : Process

A process is a computer program under execution. Linux is running many pro-
cesses at any given time. We can monitor them on the terminal using the ps command.

12 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

$ ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 mai22 ? 00:01:16 /sbin/init
root 2 0 0 mai22 ? 00:00:00 [kthreadd]
...
_rpc 469 1 0 mai22 ? 00:00:01 /sbin/rpcbind -f -w
systemd+ 475 1 0 mai22 ? 00:00:02 /lib/systemd/systemd -timesyn
root 482 1 0 mai22 ? 00:00:20 /usr/libexec/accounts -daemon
avahi 483 1 0 mai22 ? 00:00:05 avahi -daemon: running [mfa -l
root 492 1 0 mai22 ? 00:00:00 /usr/sbin/bumblebeed
message+ 495 1 0 mai22 ? 00:03:45 /usr/bin/dbus -daemon --syste
root 501 1 0 mai22 ? 00:03:43 /usr/sbin/NetworkManager --n
...
www -data 710 705 0 mai22 ? 00:00:00 nginx: worker process
www -data 711 705 0 mai22 ? 00:00:00 nginx: worker process
...
mfaceri+ 334422 278097 2 11:49 ? 00:03:32 /usr/lib/firefox -esr/firefox
mfaceri+ 335230 1216 1 12:03 ? 00:02:42 /usr/bin/latexila --gapplica
mfaceri+ 335339 1216 0 12:04 ? 00:00:46 atril /home/mfacerias/Deskto
mfaceri+ 335345 1216 0 12:04 ? 00:00:00 /usr/lib/atril/atrild
...
mfaceri+ 338657 337188 0 14:44 pts/0 00:00:00 ps -ef

As we run new commands/applications or the old commands are being completed , we can see
the number of processes grow and shrink dynamically. Linux processes are isolated and do not
interrupt each other’s execution.

With a PID, we can identify any process in Linux. We can see PID as the second column in
the output of the above ps command.

Since many processes are running at any given time in Linux, they have to share the CPU.
Process context switching is expensive in compute because the kernel has to save old registers
and load current registers, memory maps, and other resources.

2.2.2 Concept : Threads

A thread is a lightweight process. A process can do more than one unit of work
concurrently by creating one or more threads. These threads, being lightweight, can be spawned
quickly.

Let’s see an example and identify the process and its thread in Linux using the ps -eLf
command. We’re interested in these attributes :

— PID : Unique process identifier ;
— LWP : Unique thread identifier inside a process ;
— NLWP : Number of threads for a given process.

$ ps -eLf
UID PID PPID LWP C NLWP STIME TTY TIME CMD
...
root 690 1 690 0 2 Jun28 ? 00:00:00 /sbin/auditd
root 690 1 691 0 2 Jun28 ? 00:00:00 /sbin/auditd
root 709 1 709 0 4 Jun28 ? 00:00:00 /usr/sbin/ModemManager
root 709 1 728 0 4 Jun28 ? 00:00:00 /usr/sbin/ModemManager
root 709 1 729 0 4 Jun28 ? 00:00:00 /usr/sbin/ModemManager
root 709 1 742 0 4 Jun28 ? 00:00:00 /usr/sbin/ModemManager

We can easily identify single-threaded and multi-threaded processes by their NLWP values.
PIDs 690 and 709 have an NLWP of 2 and 4, respectively. Hence, they are multi-threaded, with
2 and 4 threads. All processes having an NLWP of 1 are single-threaded.

When taking a closer look in a multi-threaded process, only one LWP matches its PID, and
the others have different values of LWP. Also, note that the value assigned to an LWP, is never
given to another process.

13 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

2.2.3 Concept : Single-threaded vs. multi-threaded process

Any thread created within the process shares the same memory and resources as the
process.

In a single-threaded process, the process and thread are the same. We can also validate
that PID and LWP are the same for the single-threaded process.

In a multi-threaded process, the process has more than one thread. Such processes accomplish
multiple tasks simultaneously or almost at the same time, if the CPU is multi-threaded (and/or
multi-core).

But, as it’s said before, the thread shares the same address space as the process. There-
fore, spawning a new thread within a process becomes cheap, in terms of system resources
(computing, I/O, time).

2.2.4 Question : Is Firefox multi-threaded ?

First, run a single instance of Firefox with a single tab. After that, add a tab. At the end
add an other Firefox main window with many tabs. Using each scenarios, use ps -eLf and analyse the
results.

1. How many processes are there ?

2. How many threads are there ?

3. Conclude.

2.3 More jobs from the same shell

Let’s assume that we only have one console and that we need to use a command that will last a
long time. As an example, we will illustrate this concept by using the xeyes command that only opens
a window with 2 eyes following the mouse pointer until its killed.

2.3.1 Concept : Starting foreground

From a CLI, just call xeyes and run it. When a program is invoked like this, it is
named as a foreground execution mode.

The console stays busy until the program stop by itself or is killed.
But it remains possible to stop its execution, to put it to sleep, using CRTL+Z.

$ xeyes
<== here xeyes is running , but the CLI is busy. The eyes are following the mouse pointer

...
^Z <== here CTRL+Z was keyed. The eyes are asleep and not following the mouse pointer
[1]+ Stopped xeyes

$ ps auxf <== here we can used the CLI again !
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
...
mfaceri+ 341092 0.0 0.0 2448 616 pts/0 TN 17:16 0:00 xeyes
...

First and foremost, use your mouse to move the xeyes window at the left top of your screen. It will
be important later.

As you can see, xeyes is in stopped state. [1] is the ID of this job attached to that console. The
CLI began free, and the use of ps proves the T status.

14 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

2.3.2 Concept : Exiting stopped state

At this point, the CLI is free to complete new orders.
So, it is possible to wake up the program and put it in foreground execution mode again

using fg command.
Then, we will put it to sleep, using CRTL+Z.

$ fg
xeyes
<== here xeyes is woken up and starts following the mouse pointer again

CLI is busy again
...
^Z <== here xeyes is stopped again.
[1]+ Stopped xeyes

$ <== here the CLI is free again.

In this case, fg was invoked without any argument, because there is only one job attached to the
console. In case of more than one job, its ID is mandatory (see man fg).

2.3.3 Concept : Execution in background mode

At this point, the CLI is still free to complete new orders.
So it is possible to wake up the program and put it in background execution mode using

bg command.
$ bg
[1]+ xeyes & <== here exyes is waked up and starts following the mouse pointer

$ <== here the CLI became free again.

bg was invoked without any argument too, because there is just one job attached to the console again.
In case of more than one job, its ID is mandatory (see man bg).

Notice the ampersand (&) on the status line, meaning xeyes run in background mode.

2.3.4 Concept : Direct execution in background mode

At this point, using the free CLI, we are going to start a second instance of xeyes,
directly in background mode.
$ xeyes &
[2] 342353 <== here we can read the job ID and the PID of the associated process.

$ <== and the CLI is immediatly free

In order to do that, we used the ampersand at the end of the command line. Note that the CLI
began immediately free and that we know the ID of the job and the PID of the associated process.
Move the new xeyes window at the right top of your screen. Then you have two xeyes windows.

2.3.5 Concept : Identifying the jobs

You can use the job command to list the jobs attached to a console.
$ jobs
[1]- Running xeyes &
[2]+ Running xeyes &

15 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

Now, you can see that 2 jobs are running in the background. The 4 eyes are following your mouse
pointer. You can address each job, using its job ID.

2.3.6 To do : Juggling multiple jobs

Redo what was done before and analyse all the jobs creation and handling. Then, by
replicating the fg / CTRL+Z / bg cycle, and with the help of the jobs command to find the jobs IDs
and eyes movement to find which is stopped or not, manipulate the different jobs. Create 1 or 2 more
xeyes instances to consolidate your skills.

2.4 Streams

When a process is started, it automatically opens 3 streams :
— The standard input (stdin) stream which sends to the program what is entered on the

keyboard ;
— The standard output (stdout) stream which receives what the program wants to display on

the screen ;
— The standard error (stderr) stream which receives error messages from the program and

which is normally sent back to the screen too.

process

stdin (0) stdout (1)

stderr (2)

Each stream is identified by a number (a file handler).

2.4.1 Concept : stdout redirection to file

In this case, the display is replaced by a file. It will contain what would normally be
displayed on the screen.

$ cmd 1> path_to_file

$ cmd > path_to_file

It is therefore possible to keep track of the execution of a command.
$ ls -l > file_list

The example given provides a file that contains a list of files.

16 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

2.4.2 Concept : Concatenation vs. creation

Using a single >, if the file does not exist, it is created. If it exists, its initial content is
overwritten.
$ cat file
cat: file: No such file or directory

$ echo "Hello" > file

$ cat file
Hello

$ echo " world !" > file

$ cat file
world !

Using a double >> if the file does not exist, it is created. If it exists, the result of the command is
concatenated to its initial content.
$ cat file
cat: file: No such file or directory

$ echo "Hello" > file

$ cat file
Hello

$ echo " world !" >> file

$ cat file
Hello world !

2.4.3 Concept : stderr redirection to file

In this case, the display is replaced by a file. It will contain the error messages what
would normally be displayed on the screen.
$ cmd 2> path_to_file

Assuming that file does not exist :
$ cat file
cat: file: No such file or directory

$ cat file 2> error_file

$ cat error_file
cat: file: No such file or directory

It is therefore possible to keep track of the execution errors of a command.

2.4.4 Concept : stdout and stderr redirection to file

We use this trick to join the two output streams. In fact, we return first stderr to stdout
(2 in 1).
$ cat file
cat: file: No such file or directory <== we see stderr output

$ cat file 2>&1
cat: file: No such file or directory <== we see stderr output via stdout

17 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

$ cat file 1> error 2>&1 <== we put stdout in a file and stderr in stdout

$ cat error
cat: file: No such file or directory

Beware, it is 2>&1 and not 2>1, because in this case you will create a file named 1 !

2.4.5 Concept : stdin redirection from file

In this case, the standard input stream is replaced by the contents of a file.
$ cmd < path_to_file

It is therefore possible to use a file to automate the sending of what would be entered from the keyboard.
$ cat instructions
pq

$ fdisk < instructions

This example allows the fdisk program to run automatically by reading its instructions from a
file instead of the keyboard. Here, pq means print and quit.

2.4.6 Concept : Pipelining

This is a trick to redirect the stdout of the first command to the stdin of the second
one.
$ cmd1 | cmd2

The meta-character | is called a "pipe". You can’t use the stderr stream in pipelining.
$ ps auxf |grep firefox

mfaceri+ 278097 3.2 4.3 4356200 701152 ? Sl Jun06 205:07 _ /usr/lib/
firefox -esr/firefox -esr

mfaceri+ 278190 0.0 1.4 2619204 233308 ? Sl Jun06 1:14 | _ /usr/
lib/firefox -esr/firefox -esr ...

In this example, we use grep as a filter of the ps auxf stdout, looking for line containing firefox. Of
course, the header line of ps is invisible because firefox is not in it.

2.4.7 To do : Examples to decode

Test and comment the following examples :
1. ls -l -d ~| cut -c 5-7

2. ls -l -d ~| cut -d " " -f 4

2.4.8 To do : stdout redirection

1. Use the redirection to obtain a file that contains the list of folders in /var ;
2. Add, at the end of this file, the list of folders contained in /var/spool.

18 / 19

Michel FACERIAS SysAdmin - Part 2 - Meta-characters & Process handling

2.4.9 To do : stdout and stderr redirection

The command find /proc -name net searches for all files and folders named net that
are in the /proc folder. The execution of this command takes quite a long time.

1. Test the command and explain why there are errors ;

2. Modify the command to have the errors in a /error file and the result on the screen ;

3. Modify the command to have the errors in a /error file and the result in a /result file ;

4. Modify the command to have the errors and the result in a /all file.

19 / 19

	Understanding meta-characters
	How the shell expands meta-characters
	Concept : Meta-characters in file names
	To do : Reproduce the examples above
	Question : Dealing with meta-characters
	To do : Implement the questions above

	How to avoid the shell expansion of meta-characters
	Concept : Using an escape character
	Concept : Using a protection
	Concept : Sub-chain grouping, a definitive explanation

	Process handling
	Process birth, life and death
	Concept : What is a process ?
	To do : How to identify a process ?
	Question : Find some process information
	Concept : The birth of a process
	Question : Luke, I am your father !
	Concept : Killing a process
	To do : Licence to kill
	Question : SIGTERM vs SIGKILL
	Concept : The lifecycle of a process
	Question : Process states
	To do : How to use the ps command ?
	Concept : Process priority
	To do : Play with niceness
	Concept : Process dashboard
	To do : Measuring execution time

	Linux Process vs. Thread
	Concept : Process
	Concept : Threads
	Concept : Single-threaded vs. multi-threaded process
	Question : Is Firefox multi-threaded ?

	More jobs from the same shell
	Concept : Starting foreground
	Concept : Exiting stopped state
	Concept : Execution in background mode
	Concept : Direct execution in background mode
	Concept : Identifying the jobs
	To do : Juggling multiple jobs

	Streams
	Concept : stdout redirection to file
	Concept : Concatenation vs. creation
	Concept : stderr redirection to file
	Concept : stdout and stderr redirection to file
	Concept : stdin redirection from file
	Concept : Pipelining
	To do : Examples to decode
	To do : stdout redirection
	To do : stdout and stderr redirection

